Abstract

A multidisciplinary optimization procedure for gas turbine blade design has been developed and demonstrated on a generic 3-D blade. The blade is cooled both internally and externally (film cooling). Aerodynamic and heat transfer design criteria are integrated along with various constraints on the blade geometry. The blade is divided into numerous spanwise sections and each section is represented by a Bezier-Bernstein polynomial. A comprehensive solver for 3-D Navier-Stokes equations is used for the viscous flow calculations. The finite element method is used to obtain the blade interior temperatures. The average blade temperature and maximum blade temperature at each spanwise section are minimized, with aerodynamic and geometric constraints on the blade geometry. The constrained multiobjective optimization problem is solved using the Kreisselmeier-Steinhauser function approach. The results for a generic turbine blade design problem show significant improvements after optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.