Abstract

Multidisciplinary Design Optimization of a vehicle system for safety, NVH (noise, vibration and harshness) and weight, in a scalable HPC environment, is addressed. High performance computing, utilizing several hundred processors in conjunction with approximation methods, formal MDO strategies and engineering judgement are effectively used to obtain superior design solutions with significantly reduced elapsed computing times. The increased computational complexity in this MDO work is due to addressing multiple safety modes including frontal crash, offset crash, side impact and roof crush, in addition to the NVH discipline, all with detailed, high fidelity models and analysis tools. The reduction in large-scale MDO solution times through HPC is significant in that it now makes it possible for such technologies to impact the vehicle design cycle and improve the engineering productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call