Abstract

The milling cutter’s fracture strength is more important than its chemical stability and thermal conductivity in high-speed milling. The multidisciplinary design optimization (MDO) method is employed to optimize the fracture-resistant performance of a milling cutter in this work. An experimental study on high-speed milling of the martensitic stainless steel 0Cr13Ni4Mo is conducted. The cutting forces and cutting temperature in the milling process are measured to provide initial data for the structural optimization of the milling cutter. The mathematical models of cutting force and cutting temperature are studied. Considering that the induced stress in the milling cutter is generated by thermomechanical coupling, the thermoelastic–plastic governing equation in the milling process is introduced in this work. The sensitivity of the structural parameters to the maximum equivalent stress of the milling cutter is calculated, and the structural parameters that have the greatest effects on the maximum equivalent stress are determined as design variables for the cutters’ optimization. The MDO procedure for the cutter’s optimization consists of updating of solid model, finite element analysis of thermomechanical coupling, postprocessing, and optimization algorithm. The MDO results show that the optimized milling cutter has a better fracture-resistant performance than the initial one. The maximum deformation, overall equivalent stress, and deformation are decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call