Abstract

The purpose of this research is the optimal design of a reentry capsule configuration to minimize the mission cost which is usually modeled by minimizing reentry module mass (thermal protection system mass, propellant mass and structural mass). Multidisciplinary design optimization (MDO) is an important approach for the conceptual design of reentry capsule, because they are characterized by various disciplines that interact with one another. In this paper Trajectory, Aerodynamics, Structure, Thermal Protection System (TPS) and Deorbit Propulsion disciplines are modeled to optimize bi-conic configuration parameters. All At Once (AAO) frame work is developed and Genetic Algorithm (GA) is used to multidisciplinary conceptual design optimization of reentry mission with nonlinear constrains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.