Abstract

In this research, a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables. In this way, a parametric formulation is developed. All related disciplines, including structure, aerodynamics, guidance, and control are considered. Minimum total mass, maximum aerodynamic control effectiveness, minimum miss distance, maximum yield stress in all subsystems, controllability and gyroscopic stability constraints are some of objectives/constraints taken into account. The problem is formulated in All-At-Ones Multidisciplinary Design Optimization approach structure and solved by Simulated Annealing and minimax algorithms. The optimal configurations are evaluated in various aspects. The resulted optimal configurations have met all design objectives and constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call