Abstract

The structure and vibration control system of smart laminated composites consisting of graphite–epoxy composites and piezoelectric actuators are designed for optimum vibration suppression. The placement of piezoelectric actuators, the lay-up configurations of laminated composite plates, and the H2 control system are employed as design variables and they are optimized simultaneously by a simple genetic algorithm. To reduce complexity, only pre-selected families of lay-up configurations are considered. An objective function is the H2 performance with respect to the controlled response for vibration suppression. A multidisciplinary design optimization is performed with the above three design variables and then the output feedback system is reconstructed with a dynamic compensator based on a linear matrix inequality approach. The validity of the modeling and calculation technique is confirmed experimentally. Optimization results show that optimized smart composites with the present approach successfully realize vibration suppression and it is confirmed that the proposed multidisciplinary design optimization technique enhances the vibration suppression of smart composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.