Abstract
Multidisciplinary Design Optimization (MDO) of a two-stage Small Solid Propellant Launch Vehicle (SSPLV) by simulated annealing (SA) Method is investigated. Propulsion, weight, aerodynamic (geometry) and 3degree of freedom (3DOF) trajectory simulation disciplines are used in an appropriate combination. Suitable design variables, technological-functional constraints and minimum launch weight objective function are considered. To handle constraints augmentation of constraints to cost using penalty coefficients are used. Results are compared with gradient-base method that shows the ability of SA to escape local optimums.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.