Abstract

A new concept is proposed for individual blade control: the Active Trailing Edge (ATE). The objective of this paper is to present the current status of design and optimization of the ATE. Due to the specific nature of the subject an inherently multi-disciplinary approach is taken. The aeroservoelastic optimization of the ATE actuator is based on evolutionary algorithm. The resulting optimal actuator design, the sensitivity of the optimal design to manufacturing and material constraints and some key performance characteristics like aeroservoelastic airfoil polars and Mach-number influence on aerodynamic effectiveness are presented. For the purpose of comprehensive rotor dynamics simulation including the dynamic and aeroservoelastic behaviour of the ATE actuator, a reduced-order model is developed. The paper concludes with a presentation of active helicopter benefit analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.