Abstract

Active high-lift technologies have often proven their potential in aerodynamic analyses and wind tunnel tests, but have so far played only a minute role in civil production aircraft. This is expected to change in the future only if such technologies can be accounted for early in the aircraft design process. In this paper, the adaptation of a conceptual design process is presented, enabling it to consider circulation control as a high-lift technology. It is shown that the main aerodynamic effects of a blown flap in the boundary layer control regime can be satisfactorily modeled with a potential theory method. Some sample results of the design process indicate a potential for significant reductions of required field length in comparison with today’s aircraft, creating the potential to increase the capacity of the air transportation system, without increasing overall aircraft mass or direct operating cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.