Abstract

The development of the open-pit mining industry has set higher performance standards for mining electric shovels. Addressing issues such as low efficiency, high energy consumption, and high failure rates in working mining electric shovel devices, this paper comprehensively considers bulk mechanics, structural mechanics, and dynamics to conduct a multidisciplinary, collaborative design optimization for electric shovels by introducing the BLISCO method, which is based on an approximated model, into the structural-optimization design process of working electric shovel devices, aiming to enhance the overall performance of electric shovels. Firstly, a dynamic model of an electric shovel is established to analyze the hoist force and crowd force during the excavation process, and an accurate load input for the dynamic analysis is provided through the bulk material mechanics model. Additionally, to ensure that the stiffness of the boom meets the requirements, the maximum stress at the most critical position of the optimized boom is considered. Subsequently, the design variables are screened through experimental design, and an approximate model is established. Focusing on the hoist force, crowd force, maximum stress at the critical position of the boom, and the angle between the dipper arm and the wire rope, a mathematical model is constructed and optimized using a two-level integrated system co-optimization framework based on an approximate model (BLISCO-AM), followed by a simulation. Finally, a test bench for the electric shovel working device is constructed to compare pre- and post-optimization performance. Experimental results show that through the optimized design, the hoist force and crowd force required in a single excavation process are reduced by 6% and 8.48%, respectively, and the maximum angle between the wire rope and the dipper arm is increased by 4%, significantly improving excavation efficiency while ensuring the safety and reliability of the equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.