Abstract

_ This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper URTeC 3871303, “Using a Multidisciplinary Approach to Reservoir and Completion Optimization Within the Woodford Shale Play of the Arkoma Basin,” by Stephen C. Zagurski, SPE, and Steve Asbill, SPE, Foundation Energy Management, and Christopher M. Smith, Advanced Hydrocarbon Stratigraphy, et al. The paper has not been peer reviewed. _ Subsurface complexities related to the formation of peripheral foreland basins can have significant effects on unconventional resource development. In the Arkoma Basin of southeast Oklahoma, the onset of thrusting and tectonic loading induced a complex series of dip/slip and strike/slip faults during basin formation. The operator used a series of technologies to increase understanding of the reservoir and its hazards and provide insight into economic implications for future development plans and strategies. Introduction The Woodford is primarily a Type II kerogen source rock. The formation typically is classified as either siliceous mudstone or cherty siltstone. Variable thermal maturity across the basin places the Woodford in both the wet-gas and dry-gas phase windows (moving west to east across the basin). Complex faulting regimes within the Arkoma add a layer of complexity to horizontal development of the Woodford. The operator wanted to increase the understanding of the Woodford and the effects of faulting through the reservoir in a recent development unit in the liquids-rich fairway. The development unit consists of an existing parent well (Well X) and a pair of child wells (Well Y and Well Z). The background of Unit XYZ begins with the completion of parent Well X 4–6 years before infill development. In this portion of the basin, Well X’s initial production rate and its cumulative production to date rank it in the top 25% of wells. The wellbore is subjected to a pair of faults and was drilled in the upper half of the Woodford. Placement of Well X is substantially further east than most parent wells because it is approximately 1,600 ft from the unit boundary. This limited infill development to two wells instead of three; the Arkoma typically has seen spacing of four, and sometimes five, wells per section. Wells Y and Z were planned and drilled east of Well X with 1,100–1,600 ft of well spacing. Well spacing in the unit was slightly hindered by surface location limitations and limited true vertical depth (TVD) between surface casing and landing point. Structural complexity within the unit partially impaired infill development of the unit. Specifically, Well Y and its lateral length was shortened. In this portion of the Arkoma, fault-derived water production typically is the highest-weighted variable in a well’s operating expenditure. Thus, the ability to limit excess water production within Unit XYZ and the surrounding acreage is of paramount importance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call