Abstract
Various real-world multiobjective optimization problems are dynamic, requiring evolutionary algorithms (EAs) to be able to rapidly track the moving Pareto front of an optimization problem once an environmental change occurs. To this end, several methods have been developed to predict the new location of the moving Pareto set (PS) so that the population can be reinitialized around the predicted location. In this paper, we present a multidirectional prediction strategy to enhance the performance of EAs in solving a dynamic multiobjective optimization problem (DMOP). To more accurately predict the moving location of the PS, the population is clustered into a number of representative groups by a proposed classification strategy, where the number of clusters is adapted according to the intensity of the environmental change. To examine the performance of the developed algorithm, the proposed prediction strategy is compared with four state-of-the-art prediction methods under the framework of particle swarm optimization as well as five popular EAs for dynamic multiobjective optimization. Our experimental results demonstrate that the proposed algorithm can effectively tackle DMOPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.