Abstract

This paper explores the quantum fluid dynamical (QFD) representation of the time-dependent Schrödinger equation for the motion of a wave packet in a high dimensional space. A novel alternating direction technique is utilized to single out each of the many dimensions in the QFD equations. This technique is used to solve the continuity equation for the density and the equation for the convection of the flux for the quantum particle. The ability of the present scheme to efficiently and accurately describe the dynamics of a quantum particle is demonstrated in four dimensions where analytical results are known. We also apply the technique to the photodissociation of NOCl and NO2 where the systems are reduced to two coordinates by freezing the angular variable at its equilibrium value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.