Abstract
Korto’s multidimensional method for vibro-acoustical diagnostics and monitoring of turbine cavitation is based on a high number of spatially distributed sensors and the signal and data processing that systematically utilises three data dimensions: spatial, temporal, and operational. The method delivers unbiased data on cavitation intensity and rich diagnostical data on cavitation mechanisms. It is applicable on Kaplan, Francis, bulb, and reversible pump turbines, as well as pumps. In this paper, the theory of the method is introduced, and its application is illustrated on a prototype and three models of a Kaplan turbine. In the considered case, two distinct cavitation mechanisms responsible for the two erosion patches found in an overhaul are vibro-acoustically identified, quantified, and analysed. The cavitation quality of the models is compared. Cavitation as a source of vibration is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.