Abstract

Instanton-based rate theory is a powerful tool that is used to explore tunneling in many-dimensional systems. Yet, it diverges at the so-called “crossover temperature.” Using the uniform semiclassical transmission probability of Kemble [Phys. Rev. 48, 549 (1935)], we showed recently that in one dimension, one might derive a uniform semiclassical instanton rate theory, which has no divergence. In this paper, we generalize this uniform theory to many-dimensional systems. The resulting theory uses the same input as in the previous instanton theory, yet does not suffer from the divergence. The application of the uniform theory to dissipative systems is considered and used to revise Wolynes’ well-known analytical expression for the rate [P. G. Wolynes, Phys. Rev. Lett. 47, 968 (1981)] so that it does not diverge at the “crossover temperature.”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call