Abstract

This article presents a geometric algebra-based model for topological relation computation. This computational model is composed of three major components: the Grassmann structure preserving hierarchical multivector-tree representation (MVTree), multidimensional unified operators for intersection relation computation, and the judgement rules for assembling the intersections into topological relations. With this model, the intersection relations between the different dimensional objects (nodes at different levels) are computed using the Tree Meet operator. The meet operation between two arbitrary objects is accomplished by transforming the computation into the meet product between each pair of MVTree nodes, which produces a series of intersection relations in the form of MVTree. This intersection tree is then processed through a set of judgement rules to determine the topological relations between two objects in the hierarchy. Case studies of topological relations between two triangles in 3D space are employed to illustrate the model. The results show that with the new model, the topological relations can be computed in a simple way without referring to dimension. This dimensionless way of computing topological relations from geographic data is significant given the increased dimensionality of geographic information in the digital era.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.