Abstract

Artificial tactile sensing for robots is a counterpart to the human sense of touch, serving as a feedback interface for sensing and interacting with the environment. A vision-based tactile sensor has emerged as a novel and advantageous branch of artificial tactile sensors. Compared with conventional tactile sensors, vision-based tactile sensors possess stronger potential thanks to acquiring multimodal contact information in much higher spatial resolution, although they typically suffer from bulky size and fabrication challenges. In this article, we report a thin vision-based tactile sensor that draws inspiration from natural compound eye structures and demonstrate its capability of sensing three-dimensional (3D) force. The sensor is composed of an array of vision units, an elastic touching interface, and a supporting structure with illumination. Experiments validated the sensor's advantages, including competitive spatial resolution of deformation as high as 1016 dpi on a 5 × 8 mm2 sensing area, superior accuracy of 3D force measurement at levels of 0.018 N for tangential force and 0.213 N (0.108 N at the center region) for normal force, and real-time processing at 30 Hz, while achieving a thin size of 5 mm. We further demonstrate the sensor capability in sensing 3D force and slip occurrence in real grasping experiments. This device paves the way for robotic applications that require rich tactile information with miniaturized sensor structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.