Abstract

PurposeThe paper aims to discuss a new direction of design outline of four‐axis machine with multi‐dimensional motors. It proposes an integrated, direct‐drive machine based on switched reluctance (SR) principles. This includes how the machine is constructed and the structure of each axis of motion. The simulation and control results are also provided for performance prediction. The study aims to provide a solution and find applications for high‐performance, low‐cost manufacturing facilities.Design/methodology/approachThe study is based on simulation and experimental results for performance prediction of the multi‐dimensional motors. With the approach of grounded theory on SR machines, design and construction of each axis of motion is verified with finite element analysis. Then, corresponding control strategy is provided for the control of each axis of motion. Some corresponding experimental results are carried out to verify motor performance.FindingsThe paper provides a general design procedure for direct‐drive, integrated, multi‐dimensional SR motors. It suggests a mechanically robust, low‐cost and simple machine structure for potential applications of industrial multi‐axis machines.Research limitations/implicationsConsidering the performance from the prototype, it is expected to find applications in low‐level force and torque output such as automated small‐scale printed circuit board drillings.Practical implicationsOwing to the limitations of the present study, the machine needs further control tests for robust or adaptive applications. Therefore, researchers are encouraged to implement further advanced control strategies on the machine.Originality/valueThe authors attempt to provide a comprehensive solution of multi‐axis machine design based on direct‐drive, low‐cost multi‐dimensional SR motors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call