Abstract

Summation-by-parts (SBP) finite-difference discretizations share many attractive properties with Galerkin finite-element methods (FEMs), including time stability and superconvergent functionals; however, unlike FEMs, SBP operators are not completely determined by a basis, so the potential exists to tailor SBP operators to meet different objectives. To date, application of high-order SBP discretizations to multiple dimensions has been limited to tensor product domains. This paper presents a definition for multidimensional SBP finite-difference operators that is a natural extension of one-dimensional SBP operators. Theoretical implications of the definition are investigated for the special case of a diagonal-norm (mass) matrix. In particular, a diagonal-norm SBP operator exists on a given domain if and only if there is a cubature rule with positive weights on that domain and the polynomial-basis matrix has full rank when evaluated at the cubature nodes. Appropriate simultaneous-approximation terms are devel...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.