Abstract

Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some correlation is present in practice. In this paper, we investigate a multidimensional Bayesian STSA estimator that assumes correlated spectral components. Since the closed-form solution of this optimum estimator is not readily available, we alternatively derive closed-form expressions for an upper and a lower bound on the desired estimator. Using these bounds, we propose a new family of speech enhancement estimators that are characterized by a scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to the upper bound. An appropriate estimator for the correlation matrix of the clean speech is further derived. Evaluation results from both objective and subjective speech quality measures show that at moderate to high SNR values, where spectral correlation of speech is most noticeable, the proposed estimators can achieve significant improvements over the traditional STSA and Wiener filter estimators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.