Abstract

Stochastic Process Model has many applications in analysis of longitudinal biodemographic data. In general, such data contain various physiological variables (sometimes known as covariates or physiological indices). Longitudinal data can also contain genetic information available for all or a part of participants. Taking advantage from both genetic and non-genetic information can provide future insights into a broad range of processes describing aging-related changes in the organism. In this work, we implemented a multi-dimensional Genetic Stochastic Process Model (GenSPM) in newly developed software tool, an R-package stpm (available from CRAN: https://cran.r-project.org/web/packages/stpm), which allows researchers performing such kind of analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.