Abstract

Sequential pattern mining, which finds the set of frequent subsequences in sequence databases, is an important data-mining task and has broad applications. Usually, sequence patterns are associated with different circumstances, and such circumstances form a multiple dimensional space. For example, customer purchase sequences are associated with region, time, customer group, and others. It is interesting and useful to mine sequential patterns associated with multi-dimensional information.In this paper, we propose the theme of multi-dimensional sequential pattern mining, which integrates the multidimensional analysis and sequential data mining. We also thoroughly explore efficient methods for multi-dimensional sequential pattern mining. We examine feasible combinations of efficient sequential pattern mining and multi-dimensional analysis methods, as well as develop uniform methods for high-performance mining. Extensive experiments show the advantages as well as limitations of these methods. Some recommendations on selecting proper method with respect to data set properties are drawn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.