Abstract
The introduction of novel, powerful and rapid multidimensional separation and characterization methods has produced revolutionary global changes at the genome, proteome and metabolome level, bringing about a radical transition in our views of living systems, at the molecular level. The age of proteomics and metabolomics demands high-resolution multidimensional separation techniques. Multidimensional gas and liquid chromatography techniques, in addition to capillary and microchip electrophoresis methods, offer increased resolution and sensitivity, while also affording adequate throughput and reproducibility to meet the demands of the modern pharmaceutical industry. Coupled with MS, these techniques provide not only separation but also reliable identification of the sample components. The resolving power of these methods has proved to be superior over individual one-dimensional approaches, enabling the comprehensive separation of complex biological mixtures, with excellent resolution and reproducibility. High capacity computer systems that are capable of rigorous qualitative and quantitative analysis of the separation profiles allow the establishment and mining of large databases. Examples of various modern multidimensional separation techniques, and their integration with MS, are reviewed, here, with respect to pharmaceutical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.