Abstract

The existence, stability and other dynamical properties of a new type of multi-dimensional (2D or 3D) solitons supported by a transverse low-dimensional (1D or 2D, respectively) periodic potential in the nonlinear Schr\"{o}dinger equation with the self-defocusing cubic nonlinearity are studied. The equation describes propagation of light in a medium with normal group-velocity dispersion (GVD). Strictly speaking, solitons cannot exist in the model, as its spectrum does not support a true bandgap. Nevertheless, the variational approximation (VA) and numerical computations reveal stable solutions that seem as completely localized ones, an explanation to which is given. The solutions are of the gap-soliton type in the transverse direction(s), in which the periodic potential acts in combination with the diffraction and self-defocusing nonlinearity. Simultaneously, in the longitudinal (temporal) direction these are ordinary solitons, supported by the balance of the normal GVD and defocusing nonlinearity. Stability of the solitons is predicted by the VA, and corroborated by direct simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.