Abstract

SUMMARY The prevailing framework for robust stability and performance analysis requires that the uncertain system be written as a linear fractional transformation of the uncertain parameters. This problem is algebraically equivalent to the problem of deriving the state space realization for a multidimensional transfer function matrix, for which a systematic algorithm was recently provided by Cheng and DeMoor. 1 In this work an algorithm is developed that reduces the dimension of the realizations while improving numerical accuracy, reducing computational expense, and reducing run-time memory requirements. Such improvements are required for the realization of large scale uncertain systems, which have large numbers of inputs, outputs, states, and=or uncertain parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.