Abstract

In our companion paper "Multidimensional rational covariance extension with applications to spectral estimation and image compression" we discussed the multidimensional rational covariance extension problem (RCEP), which has important applications in image processing, and spectral estimation in radar, sonar, and medical imaging. This is an inverse problem where a power spectrum with a rational absolutely continuous part is reconstructed from a finite set of moments. However, in most applications these moments are determined from observed data and are therefore only approximate, and RCEP may not have a solution. In this paper we extend the results to handle approximate covariance matching. We consider two problems, one with a soft constraint and the other one with a hard constraint, and show that they are connected via a homeomorphism. We also demonstrate that the problems are well-posed and illustrate the theory by examples in spectral estimation and texture generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.