Abstract
A silicon nitride ring resonator with implanted ytterbium ions offers a means for greatly enhanced ion–light interactions in an integrated optics platform. Rare-earth ions in solids are of particular interest for quantum information storage and processing because of the long coherence times of the 4f states1. In the past few years, substantial progress has been made by using ensembles of ions2,3,4,5,6 and single ions7,8,9,10. However, the weak optical transitions within the 4f manifold pose a great challenge to the optical interaction with a single rare-earth ion on a single-photon level. Here, we demonstrate a ninefold enhanced ion–light interaction (Purcell effect11) in an integrated-optics-based, fibre-coupled silicon nitride (Si3N4) ring resonator with implanted ytterbium ions (Yb3+). We unveil the one-, two- and three-dimensional contributions to the Purcell factor as well as the temperature-dependent decoherence and depolarization of the ions. The results indicate that this cavity quantum electrodynamics (QED) system has the potential of interfacing single rare-earth ions with single photons on a chip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.