Abstract
AbstractIn this article we present a parametric estimation method for certain multiparameter heavy‐tailed Lévy‐driven moving averages. The theory relies on recent multivariate central limit theorems obtained via Malliavin calculus on Poisson spaces. Our minimal contrast approach is related to previous papers, which propose to use the marginal empirical characteristic function to estimate the one‐dimensional parameter of the kernel function and the stability index of the driving Lévy motion. We extend their work to allow for a multiparametric framework that in particular includes the important examples of the linear fractional stable motion, the stable Ornstein–Uhlenbeck process, certain CARMA(2, 1) models, and Ornstein–Uhlenbeck processes with a periodic component among other models. We present both the consistency and the associated central limit theorem of the minimal contrast estimator. Furthermore, we demonstrate numerical analysis to uncover the finite sample performance of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.