Abstract

An optimized vector-quantization-inspired signal constellation design (OVQ-SCD) suitable for multidimensional optical transport is proposed, in which signal constellation radii transformation function is optimized and near-uniform distribution of points is achieved. The proposed OVQ-SCD is used in a tandem with a hybrid multidimensional coded-modulation scheme employing Slepian sequences as electrical discrete-time basis functions, orthogonal prolate spheroidal wave functions as impulse responses of optical filters in orthogonal-division multiplexing, and spatial modes as optical continuous-time basis functions. It has been shown that the proposed multidimensional coded-modulation schemes based on OVQ-SCDs outperform corresponding counterparts and can be used to enable beyond 10 Pb/s serial optical transport over spatial division multiplexing (SDM) fibers as well as beyond 1 Pb/s transport over SMFs. The proposed OVQ-SCD-based hybrid multidimensional coded modulation scheme can simultaneously solve the problems related to the limited bandwidth of information-infrastructure, high energy consumption, and heterogeneity of network segments; while enabling elastic and dynamic bandwidth allocation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call