Abstract
The conventional boundary element method (BEM) uses internal cells for the domain integrals, when nonlinear problems or problems with domain effects are solved. In the conventional BEM, however, the merit of the BEM, which is easy preparation of data, is lost. This paper presents numerical integration for a meshless BEM, which does not require internal cells. This method uses arbitrary internal points instead of internal cells. First, a multidimensional interpolation method for distribution in an arbitrary domain is shown using boundary integral equations. This method requires values on a boundary of a region and values at arbitrary internal points. In this paper, multidimensional numerical integration is proposed using the above multidimensional interpolation method. This integration is useful for inelastic problems and thermal stress analysis with arbitrary internal heat generation. This method is based on an improved multiple-reciprocity BEM (triple-reciprocity BEM) for heat conduction analysis with heat generation. In order to investigate the efficiency of this method, several numerical examples are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.