Abstract

Information networks are ubiquitous in many applications. A popular way to facilitate the information in a network is to embed the network structure into low-dimension spaces where each node is represented as a vector. The learned representations have been proven to advance various network analysis tasks such as link prediction and node classification. The majority of existing embedding algorithms are designed for the networks with one type of nodes and one dimension of relations among nodes. However, many networks in the real-world complex systems have multiple types of nodes and multiple dimensions of relations. For example, an e-commerce network can have users and items, and items can be viewed or purchased by users, corresponding to two dimensions of relations. In addition, some types of nodes can present hierarchical structure. For example, authors in publication networks are associated to affiliations; and items in e-commerce networks belong to categories. Most of existing methods cannot be naturally applicable to these networks. In this paper, we aim to learn representations for networks with multiple dimensions and hierarchical structure. In particular, we provide an approach to capture independent information from each dimension and dependent information across dimensions and propose a framework MINES, which performs Multi-dImension Network Embedding with hierarchical Structure. Experimental results on a network from a real-world e-commerce website demonstrate the effectiveness of the proposed framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.