Abstract

Sulfonated reactive azo dyes, such as Reactive Orange 107, are extensively used in textile industries. Conventional wastewater treatment systems are incapable of degrading and decolorizing reactive azo dyes completely from effluents, because of their stability and resistance to aerobic biodegradation. However, reactive azo dyes are degradable under anaerobic conditions by releasing toxic aromatic amines. To clarify reaction mechanisms and the present toxicity, the hydrolyzed Reactive Orange 107 was treated in anaerobic-aerobic two-step batch experiments. Sulfonated transformation products were identified employing coupled ICP-MS and Q-TOF-MS measurements. Suspected screening lists were generated using the EAWAG-BBD. The toxicity of the reactor content was determined utilizing online measurements of the inhibition of Vibrio fischeri. The OCHEM web platform for environmental modeling was instrumental in the estimations of the environmental impact of generated transformation products.

Highlights

  • IntroductionThe remaining dyes from several industrial sources (e.g., textile, dye and dye intermediates, recycling, pharmaceuticals, etc.) are regarded as dischargers of a variety of organic pollutants into natural water resources or wastewater treatment systems (Carmen and Daniela 2012)

  • The remaining dyes from several industrial sources are regarded as dischargers of a variety of organic pollutants into natural water resources or wastewater treatment systems (Carmen and Daniela 2012)

  • With respect to the generated suspected screening list from EAWAG-BBD pathway prediction system, three anaerobic transformation products could be found regarding to their exact measured masses

Read more

Summary

Introduction

The remaining dyes from several industrial sources (e.g., textile, dye and dye intermediates, recycling, pharmaceuticals, etc.) are regarded as dischargers of a variety of organic pollutants into natural water resources or wastewater treatment systems (Carmen and Daniela 2012). Estimates show that 280,000 tons of textile dyes are discharged in industrial effluents per year worldwide (Jin et al 2007). One group of these dyes are the sulfonated reactive azo dyes, which contain chromophoric azo groups, where nitrogen atoms are linked to sp2-hybridized carbon atoms of aromatic rings with additional sulfonic acid groups (Pathak et al 2014).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.