Abstract
User studies in information science have recognised relevance as a multidimensional construct. An implication of multidimensional relevance is that a user's information need should be modeled by multiple data structures to represent different relevance dimensions. While the extant literature has attempted to model multiple dimensions of a user's information need, the fundamental assumption that a multidimensional model is better than a uni-dimensional model has not been addressed. This study seeks to test this assumption. Our results indicate that a retrieval system that models both topicality and the novelty dimension of a users' information need outperforms a system with a uni-dimensional model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.