Abstract

Geometrical considerations are important with respect to the stability and efficiency of avalanche electric discharge lasers. Parameters such as the electrode contours and the distribution of preionization electrons affect excitation rates through the relative values of the local electric field, local depletion of initial species, and through the response of the discharge circuitry to spatially dependent conditions within the plasma. Constriction of the discharge and subsequent impedance mismatch of the discharge to the pulse forming line result from these spatial nonuniformities. In this paper geometrical effects in the mercury bromide electric discharge laser are examined by comparing the results from a multidimensional discharge and kinetics model with experimental observations. The code models electron and heavy particle kinetics and laser intensity in time and one spatial dimension: parallel to the electrodes and perpendicular to the optical axis. Quantities whose spatial dependence is perpendicular to this dimension, such as the contours of the electrodes, are accounted for through their impact on the local electric field. HgBr laser efficiency and spatial characteristics are examined as a function of stored electrical energy, the impedance of the pulse-forming circuitry, electrode contours, and profile of the preionization electron density. Parasitic discharges within the gas, but exterior to the optical cavity, are examined as a mechanism through which the magnitude of the preionization density can effect laser efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.