Abstract

This article summarizes model analysis of the dispersion process of a Diesel spray on the wall surface in order to simulate the spray-wall interaction process in Diesel engines. The mixture formation process near the wall of the piston cavity affects the combustion process and the hydrocarbon or soot formation process through the quenching of the mixture and flame at the wall surface. In particular, mixture burning occurs mainly near the cavity wall through the whole combustion period in the case of high pressure fuel injection. In this article, representative modeling approaches on spray-wall interaction process including the film flow formation are summarized briefly. Then, our models of spray impingement for low/high-temperature models including the process of fuel film formation, film breakup, wall-drop/film heat transfer, and droplet breakup owing to the solid-liquid interface boiling are introduced with the comparison of experimental results. This review article includes 83 references.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call