Abstract
The seller of N distinct objects is uncertain about the buyer's valuation for those objects. The seller's problem, to maximize expected revenue, consists of maximizing a linear functional over a convex set of mechanisms. A solution to the seller's problem can always be found in an extreme point of the feasible set. We identify the relevant extreme points and faces of the feasible set. With N = 1, the extreme points are easily described providing simple proofs of well-known results. The revenue-maximizing mechanism assigns the object with probability one or zero depending on the buyer's report. With N > 1, extreme points often involve randomization in the assignment of goods. Virtually any extreme point of the feasible set maximizes revenue for a well-behaved distribution of buyer's valuations. We provide a simple algebraic procedure to determine whether a mechanism is an extreme point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.