Abstract

An in-depth appreciation of organ form and function relies on the ability to image intact tissues across multiple scales. Difficulties associated with imaging deep within organs, however, can preclude high-resolution multidimensional imaging of live and fixed tissues. This is particularly challenging in the mammary gland, where the epithelium lies deeply encased within a stromal matrix. Recent advances in deep-tissue and live imaging methodologies are increasingly facilitating the visualization of complex cellular structures within their native environment. Alongside, refinements in optical tissue clearing and immunostaining methods are enabling 3D fluorescence imaging of whole organs at unprecedented resolutions. Collectively, these methods are illuminating the dynamic biological processes underlying tissue morphogenesis, homeostasis, and disease. This review provides a snapshot of the current and state-of-the-art multidimensional imaging techniques applied to the postnatal mammary gland, illustrating how these approaches have revealed important new insights into mammary gland ductal development and lactation. Continual evolution of multidimensional image acquisition and analysis methods will undoubtedly offer further insights into mammary gland biology that promises to shed new light on the perturbations leading to breast cancer.

Highlights

  • Life is underpinned by a series of dynamic biological events tightly coordinated in space and time

  • High-resolution imaging methodologies, genetically-encoded fluorophores and in vivo models are enabling this endeavor, illuminating the dynamic cellular and subcellular events that underpin life (Follain et al, 2017). This mini-review focuses on the application of multidimensional imaging methods to the mammary gland, a secretory organ essential for mammalian offspring survival

  • The adult mammary gland comprises of a branched ductal epithelium sheathed by an adipocyterich stroma

Read more

Summary

Introduction

Life is underpinned by a series of dynamic biological events tightly coordinated in space and time. When combined with optical tissue clearing (discussed below), LSFM facilities rapid whole-organ 3D imaging of fixed specimens (Keller and Ahrens, 2015; Susaki and Ueda, 2016), including the mammary gland (Lloyd-Lewis et al, 2016).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.