Abstract
The problem of establishing inequalities of the Hermite–Hadamard type for convex functions on n-dimensional convex bodies translates into the problem of finding appropriate majorants of the involved random vector for the usual convex order. We present two results of partial generality which unify and extend the most part of the multidimensional Hermite–Hadamard inequalities existing in the literature, at the same time that lead to new specific results. The first one fairly applies to the most familiar kinds of polytopes. The second one applies to symmetric random vectors taking values in a closed ball for a given (but arbitrary) norm on R n . Related questions, such as estimates of approximation and extensions to signed measures, also are briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.