Abstract

The flat open-circuit voltage (OCV) curve of LiFePO4 (LFP) batteries poses a significant challenge to state of charge (SOC) estimation. To solve this problem, this paper proposes a data-driven SOC estimation method based on multi-dimensional features, especially incorporating force signals. The significant force variation at the middle SOC region section compensates for the flat OCV problem. A long short-term memory (LSTM) neural network model is established to estimate SOC. Battery voltage, current, temperature, and force data sampled only in 5 s are taken as input. The proposed method is validated under different dynamic testing profiles and different temperatures. Experimental results indicate that this method can highly improve SOC estimation accuracy in the middle SOC region, with less than 0.5% root mean square errors and less than 2.5% maximum errors. The validation results at different temperatures also maintain high accuracy with the same model, showing strong robustness and excellent generalization performance. Additionally, the model training process of this method only takes 1.5 h, and the online estimation time is less than 1 s, considerably reducing time cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.