Abstract
In this paper we propose and analyze an exponentially fitted simplicial finite element method for the numerical approximation of solutions to diffusion-convection equations with tensor-valued diffusion coefficients. The finite element method is first formulated using exponentially fitted finite element basis functions constructed on simplicial elements in arbitrary dimensions. Stability of the method is then proved by showing that the corresponding bilinear form is coercive. Upper error bounds for the approximate solution and the associated flux are established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.