Abstract

The global quantum network requires the distribution of entangled states over long distances, with substantial advances already demonstrated using polarization. While Hilbert spaces with higher dimensionality, e.g., spatial modes of light, allow higher information capacity per photon, such spatial mode entanglement transport requires custom multimode fiber and is limited by decoherence-induced mode coupling. Here, we circumvent this by transporting multidimensional entangled states down conventional single-mode fiber (SMF). By entangling the spin-orbit degrees of freedom of a biphoton pair, passing the polarization (spin) photon down the SMF while accessing multiple orbital angular momentum (orbital) subspaces with the other, we realize multidimensional entanglement transport. We show high-fidelity hybrid entanglement preservation down 250 m SMF across multiple 2 × 2 dimensions, confirmed by quantum state tomography, Bell violation measures, and a quantum eraser scheme. This work offers an alternative approach to spatial mode entanglement transport that facilitates deployment in legacy networks across conventional fiber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.