Abstract
Over the past two decades, coherent multidimensional spectroscopies have been implemented across the terahertz, infrared, visible, and ultraviolet regions of the electromagnetic spectrum. A combination of coherent excitation of several resonances with few-cycle pulses, and spectral decongestion along multiple spectral dimensions, has enabled new insights into wide ranging molecular scale phenomena, such as energy and charge delocalization in natural and artificial light-harvesting systems, hydrogen bonding dynamics in monolayers, and strong light-matter couplings in Fabry-Pérot cavities. However, measurements on ensembles have implied signal averaging over relevant details, such as morphological and energetic inhomogeneity, which are not rephased by the Fourier transform. Recent extension of these spectroscopies to provide diffraction-limited spatial resolution, while maintaining temporal and spectral information, has been exciting and has paved a way to address several challenging questions by going beyond ensemble averaging. The aim of this Perspective is to discuss the technological developments that have eventually enabled spatially resolved multidimensional electronic spectroscopies and highlight some of the very recent findings already made possible by introducing spatial resolution in a powerful spectroscopic tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.