Abstract

In this paper, we present and analyze a novel concept for multidimensional elastic routing based on spatial and spectral optical networking enabled by optical Multiple Input Multiple Output (MIMO) processing and Orthogonal Frequency Division Multiplexing (OFDM). These two techniques, complemented with dynamic adaptive coded-modulation are shown to form the three cornerstones of the multidimensional elastic routing concept, such that they can perform key functionality currently performed by optical crossconnects and/or Layer 2 optical switches. A statistical throughput analysis which relates key spatial and spectral components (e.g. aggregation overhead, spatial inputs/outputs, and number of spectral superbands), and identifies important practical scenarios is performed. Moreover, a performance evaluation of a flexible rate-adaptive Low Density Parity Check (LDPC)-based coded modulation scheme for multidimensional elastic networking is presented, revealing considerable gains compared to legacy approaches. By thus exploiting spatial and spectral domains in optical fiber to enable flexible routing and switching, the new scheme is promising for next-generation elastic optical networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.