Abstract

A signal synthesizer uses a digital waveguide network having at least a two dimensional matrix of waveguide sections interconnected by junctions to filter one or more excitation signals so as to generate an array of synthesized output signals. The digital waveguide network has sets of waveguide sections interconnected by junctions. Each waveguide section includes two digital delay lines running parallel to each other for propagating signals in opposite directions and each junction has reflection and propagation coefficients assigned to it for controlling reflection and propagation of signals in the waveguide sections connected to that junction. Except for junctions along boundaries of the digital waveguide matrix, each junction is at least a four-way junction that interconnect at least four waveguide sections so as to scatter and intermix signals in flowing through those waveguide sections. At least one signal source, coupled to specified junctions of the digital waveguide network, provides excitation signals to the digital waveguide network. In addition, a parameter memory stores sets of control parameters, including waveguide control parameters for controlling how the digital waveguide network filters signals propagating therethrough and signal source parameters which govern the excitation signals produced by the signal source or sources. Finally, a digital signal processor or controller operates the signal sources and digital waveguide network using a selected set of the control parameters so as to synthesize an array of output signals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call