Abstract

The computer-assisted design and optimization of peptides with selective cancer cell killing activity was achieved through merging the features of anticancer peptides, cell-penetrating peptides, and tumor-homing peptides. Machine-learning classifiers identified candidate peptides that possess the predicted properties. Starting from a template amino acid sequence, peptide cytotoxicity against a range of cancer cell lines was systematically optimized while minimizing the effects on primary human endothelial cells. The computer-generated sequences featured improved cancer-cell penetration, induced cancer-cell apoptosis, and were enabled a decrease in the cytotoxic concentration of co-administered chemotherapeutic agents in vitro. This study demonstrates the potential of multidimensional machine-learning methods for rapidly obtaining peptides with the desired cellular activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.