Abstract
We propose a new declustering scheme for allocating uniform multidimensional data among parallel disks. The scheme, aimed at reducing disk access time for range queries, is based on Golden Ratio Sequences for two dimensions and Kronecker Sequences for higher dimensions. Using exhaustive simulation, we show that, in two dimensions, the worst-case (additive) deviation of the scheme from the optimal response time for any range query is one when the number of disks (M) is at most 22; its worst-case deviation is two when M /spl les/ 94; and its worst-case deviation is four when M /spl les/ 550. In two dimensions, we prove that whenever M is a Fibonacci number, the average performance of the scheme is within 14 percent of the (generally, unachievable) strictly optimal scheme and its worst-case response time is within a multiplicative factor three of the optimal response time for any query, and within a factor 1.5 of the optimal for large queries. We also present comprehensive simulation results, on two-dimensional as well as on higher-dimensional data, that compare and demonstrate the advantages of our scheme over some recently proposed schemes in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.