Abstract

In recent times, the production of multidimensional data in various domains and their storage in array databases has witnessed a sharp increase; this rapid growth in data volumes necessitates compression in array databases. However, existing compression schemes used in array databases are general-purpose and not designed specifically for the databases. They could degrade query performance with complex analytical tasks, which incur huge computing costs. Thus, a compression scheme that considers the workflow of array databases is required. This study presents a compression scheme, SEACOW, for storing and querying multidimensional array data. The scheme is specially designed to be efficient for both dimension-based and value-based exploration. It considers data access patterns for exploration queries and embeds a synopsis, which can be utilized as an index, in the compressed array. In addition, we implement an array storage system, namely MSDB, to perform experiments. We evaluate query performance on real scientific datasets and compared it with those of existing compression schemes. Finally, our experiments demonstrate that SEACOW provides high compression rates compared to existing compression schemes, and the synopsis improves analytical query processing performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.