Abstract

By tailoring the active-region quantum wells and barriers of 4.5-5.0-μm-emitting quantum cascade lasers (QCLs), the device performances dramatically improve. Deep-well QCLs significantly suppress carrier leakage, as evidenced by high values for the threshold-current characteristic temperature <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> (253 K) and the slope-efficiency characteristic temperature <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> (285 K), but, due to stronger quantum confinement, the global upper-laser-level lifetime τ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4g</sub> decreases, resulting in basically the same room-temperature (RT) threshold-current density <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">J</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> as conventional QCLs. Tapered active-region (TA) QCLs, devices for which the active-region barrier heights increase in energy from the injection to the exit barriers, lead to recovery of the τ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4g</sub> value while further suppressing carrier leakage. As a result, experimental RT <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">J</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> values from moderate-taper TA 4.8-μm emitting QCLs are ~14% less than for conventional QCLs and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> reaches values as high as 797 K. A step-taper TA (STA) QCL design provides both complete carrier-leakage suppression and an increase in the τ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4g</sub> value, due to Stark-effect reduction and strong asymmetry. Then, the RT <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">J</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> value decreases by at least 25% compared to conventional QCLs of same geometry. In turn, single-facet, RT pulsed and continuous-wave maximum wallplug-efficiency values of 29% and 27% are projected for 4.6-4.8-μm-emitting QCLs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call