Abstract
Current use of multidimensional computerized adaptive testing (MCAT) has been developed in conjunction with compensatory multidimensional item response theory (MIRT) models rather than with non-compensatory ones. In recognition of the usefulness of MCAT and the complications associated with non-compensatory data, this study aimed to develop MCAT algorithms using non-compensatory MIRT models and to evaluate their performance. For the purpose of the study, three item selection methods were adapted and compared, namely, the Fisher information method, the mutual information method, and the Kullback-Leibler information method. The results of a series of simulations showed that the Fisher information and mutual information methods performed similarly, and both outperformed the Kullback-Leibler information method. In addition, it was found that the more stringent the termination criterion and the higher the correlation between the latent traits, the higher the resulting measurement precision and test reliability. Test reliability was very similar across the dimensions, regardless of the correlation between the latent traits and termination criterion. On average, the difficulties of the administered items were found to be at a lower level than the examinees' abilities, which shed light on item bank construction for non-compensatory items.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.