Abstract

We present a microscopic theory for nonlinear optical spectroscopy of N molecules in an optical cavity. Using the Heisenberg-Langevin equation, an analytical expression is derived for the time- and frequency-resolved signals accounting for arbitrary numbers of vibrational excitations. We identify clear signatures of the polariton-polaron interaction from multidimensional projections of the signal, e.g., pathways and timescales. Cooperative dynamics of cavity polaritons against intramolecular vibrations is revealed, along with a crosstalk between long-range coherence and vibronic coupling that may lead to localization effects. Our results further characterize the polaritonic coherence and the population transfer that is slower.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call